Volume Profile for Aquation of $Co(en)_2(NH_3)X^{2+}$ (X = trans-Cl⁻, trans-Br⁻, cis-Br⁻, cis-NO₃⁻)

Y. KITAMURA*, S. TANEDA and K. KURODA

Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790, Japan (Received August 29, 1988)

In a recent report, volume profiles for twentyfour aquation reactions of the anionopentaamminecobalt(III) complex ion were examined [1]. It has been suggested that a correlation (eqn. (1)) exists

$$\Delta V^{\ddagger} = (0.48 \pm 0.02) \Delta V + (1.5 \pm 0.3) \tag{1}$$

between their activation volume (ΔV^*) and the reaction volume (ΔV) . In the present work, we have investigated the volume profiles of the title reaction:

trans-Co(en)₂(NH₃)Cl²⁺ + H₂O
$$\longrightarrow$$

trans-Co(en)₂(NH₃)H₂O³⁺ + Cl⁻

trans-Co(en)₂(NH₃)Br²⁺ + H₂O \longrightarrow trans-Co(en)₂(NH₃)H₂O³⁺ + Br⁻

cis-Co(en)₂(NH₃)Br²⁺ + H₂O \longrightarrow Co(en)₂(NH₃)H₂O³⁺ + Br⁻

We have also reinvestigated ΔV^{\pm} for the aquation of Co(NH₃)₅X²⁺ (X = Cl⁻, Br⁻, NO₃⁻) at relatively high temperature (40 ~ 65 °C). The resultant volume profiles for the aquations of Co(en)₂(NH₃)X²⁺ and Co(NH₃)₅X²⁺ are compared.

Experimental

The following three complex salts were obtained according to the literature and identified by elemental analysis and UV absorption [2, 3] [λ_{max} (in nm) (ϵ)]: trans-[Co(en)₂(NH₃)Cl]Cl₂·H₂O, 526 (48), 454_{sh}, 361 (53) [4]; trans-[Co(en)₂(NH₃)Br]Br₂·H₂O, 544 (52), 459_{sh} (28) [5]; cis-[Co(en)₂(NH₃)-NO₃](NO₃)₂, 488 (80), 345 (71) [4]. cis-[Co(en)₂(NH₃)Br]Br₂·H₂O [6], trans-[Co(en)₂(NH₃)H₂O]-(NO₃)₃ [7] and the perchlorate salts of Co(NH₃)₅X²⁺ (X = Cl⁻, Br⁻, NO₃⁻) [8] were obtained in previous

Results and Discussion

Kinetic results are summarized in Table 1. Aliquots of reacting solution were taken from the high pressure vessel and analysed spectrophotometrically. The aquations of $Co(en)_2(NH_3)X^{2+}$ were followed at 300 nm, where the molar extinction coefficients of *trans*- and *cis*-Co(en)_2(NH_3)H_2O^{3+} are approximately equal [5]. Generally, reaction was followed over two or three half-lives. In every case, the rate constant increased with an increase in pressure. Linear dependence of $\ln k_{obs}$ on P was assumed [8]. A negative value of ΔV^{\pm} was obtained typically within error limits of ± 0.3 cm³ mol⁻¹.

Dilatometry was carried out at 25 °C by mixing a 10 mM aqueous solution of the complex salt with an equivalent amount of 50 mM NaOH. Duplicate runs were performed. Error limits were typically $\pm 0.2 \text{ cm}^3 \text{ mol}^{-1}$. The activation volume at infinite dilution was obtained for the base hydrolysis of $\text{Co(en)}_2(\text{NH}_3)\text{X}^{2+}$ (ΔV^0_{bh}) and for the neutralization of trans-Co(en)}_2(\text{NH}_3)\text{H}_2\text{O}^{3+} ($\Delta V^0_{\text{neut}} = 27.0 \text{ cm}^3 \text{ mol}^{-1}$). The reaction volume for the aquation (ΔV^0) was calculated by $\Delta V^0 = \Delta V^0_{\text{bh}} - \Delta V^0_{\text{neut}}$. The difference between the partial molar volume (\bar{V}) of trans- and cis-Co(en)}_2(\text{NH}_3)\text{H}_2\text{O}^{3+} (0.4 cm³ mol⁻¹) or between \bar{V} of trans- and cis-Co(en)}_2(\text{NH}_3)\text{OH}^{2+} (-1.5 cm³ mol⁻¹) was neglected [7]. The ΔV^{\pm} and ΔV^0 values are summarized in

The ΔV^{\dagger} and ΔV^{0} values are summarized in Table 2. From this Table the following can be inferred:

(i) In the case of $Co(NH_3)_5 X^{2+}$ (X = Cl⁻, Br⁻, NO₃⁻) the magnitude of ΔV^{\pm} does not depend significantly on the reaction temperature.

(ii) The ΔV^0 for Co(en)₂(NH₃)X²⁺ is close to the ΔV^0 for Co(NH₃)₅X²⁺ with the same X. This underlines the independence of the reaction volume of the Co(III) complex on the kind of non-labile ligand [11].

(iii) The ΔV^{\ddagger} for Co(en)₂(NH₃)X²⁺ is close to the ΔV^{\ddagger} for Co(NH₃)₅X²⁺ with the same X. In this connection we discussed before that the former might be larger than the latter by 2 ± 1 cm³ mol⁻¹ [7]. This description was based on a $\Delta V^{\ddagger} = -3.2$ cm³ mol⁻¹ for the aquation of cis-Co(en)₂(NH₃)-Cl²⁺ (C = 5.5 mM, [HClO₄] = 100 mM, t = 75 °C, $\lambda = 300$ nm). However, it may be better not to take this value of ΔV^{\ddagger} into consideration, because the aquation of cis-Co(en)₂(NH₃)Cl²⁺ does not go to completion and it is difficult to obtain an accurate value of ΔV^{\ddagger} for this reaction.

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Complex	C ^a (mM)	t (°C)	λ ^b (nm)	$k_{obs} \times 10^4 \text{ (s}^{-1})^{c}$ at pressures (MPa) of				
				5	50	100	150	200
Co(NH ₃) ₅ Cl ²⁺	1.0	65.1	282	1.83	2.06	2.30	2.55	2.77
$Co(NH_3)_5Br^{2+}$	1.0	54.1	310	1.85	2.17	2.39	2.64	2.99
$Co(NH_3)$ 5NO3 ²⁺	1.0	40.1	270	1.72	2.00	2.22	2.40	2.68
trans-Co(en) ₂ (NH ₃)Cl ^{2+d}	2.5	69.7	300	0.641	0.696	0.775	0.834	0.900
trans-Co(en) ₂ (NH ₃)Br ^{2+e}	1.0	60.1	300	1.10	1.11	1.22	1.27	1.35
cis-Co(en) ₂ (NH ₃)Br ²⁺	0.9	60.0	300	0.956	1.06	1.18	1.29	1.42
cis-Co(en) ₂ (NH ₃)NO ₃ ²⁺	6.0	45.2	300	1.15	1.26	1.43	1.65	1.78

TABLE 1. Pressure Effect on the Aquation Velocity in 100 mM HClO₄

^aComplex concentration; $mM = 10^{-3} \text{ mol dm}^{-3}$. ^bReaction was followed at this wavelength. ^cMean of three runs. ^dReaction was followed until 40-50% completion [5]. ^eIn 1 mM HClO₄.

TABLE 2. Volume Profiles $(\text{cm}^3 \text{ mol}^{-1})$ for the Aquation Reactions

Complex	ΔV^{\ddagger} (t in °C)	ΔV [‡] (at 25 °C)	ΔV ⁰ (at 25 °C)
$\frac{Co(NH_3)_5Cl^{2+}}{Co(NH_3)_5Br^{2+}}$ $Co(NH_3)_5NO_3^{2+}$ $trans-Co(en)_2(NH_3)Cl^{2+}$ $trans-Co(en)_2(NH_3)Br^{2+}$ $cis-Co(en)_2(NH_3)Br^{2+}$	$\begin{array}{r} -6.0 \ (65) \\ -6.4 \ (54) \\ -5.7 \ (40) \\ -5.0 \ (70) \\ -3.1 \ (60) \\ -5.6 \ (60) \end{array}$	7.9 ^a 6.7 ^a 4.9 ^a	-15.6^{a} 14.4 ^a 12.3 ^a 17.3 14.7 16.1
cis-Co(en) ₂ (NH ₃)NO ₃ ²⁺	-6.1 (45)		-13.2

^aFrom refs. 9 and 10.

(iv) The ΔV^{\ddagger} and ΔV^{0} values for Co(en)₂(NH₃)-X²⁺ approximately satisfy eqn. (1). This means that the \overline{V} of the transition state is close to the corresponding mean \overline{V} of the initial and final state. It may be interpreted that the entering H₂O and the leaving X participate almost equally to the transition state. Thus, aquation of $Co(en)_2(NH_3)X^{2+}$ will most probably proceed through an interchange mechanism.

References

- 1 Y. Kitamura, K. Yoshitani and T. Itoh, *Inorg. Chem.*, 27 (1988) 996.
- 2 T. Yasui and Y. Shimura, Bull. Chem. Soc. Jpn., 36 (1963) 1286.
- 3 A. Werner, Justus Liebigs Ann. Chem., 386 (1912) 1.
- 4 R. S. Nyholm and M. L. Tobe, J. Chem. Soc., (1956) 1707.
- 5 M. L. Tobe, J. Chem. Soc., (1959) 3776.
- 6 Y. Kitamura, G. A. Lawrance and R. van Eldik, to be submitted for publication.
- 7 Y. Kitamura, T. Takamoto and K. Yoshitani, Inorg. Chem., 27 (1988) 1382.
- 8 Y. Kitamura, R. van Eldik and H. Kelm, *Inorg. Chem.*, 23 (1984) 2038.
- 9 Y. Kitamura, Inorg. Chem., 24 (1985) 2.
- 10 W. E. Jones, L. R. Carey and T. W. Swaddle, *Can. J. Chem.*, 50 (1972) 2739.
- 11 R. van Eldik, Y. Kitamura and C. P. P. MacColl, Inorg. Chem., 25 (1986) 4252.